Aqui você encontra infomações sobre Informática, Eletrônica, Elétrica, Mecânica e Automação
Mostrando postagens com marcador Elétrica. Mostrar todas as postagens
Mostrando postagens com marcador Elétrica. Mostrar todas as postagens

sexta-feira, 11 de março de 2011

Disjuntor

O disjuntor é um componente essencial na atualidade e um  importante mecanismo de segurança no interior de uma casa. Sempre que a fiação elétrica recebe corrente muito elevada o disjuntor corta a energia até que alguém possa resolver o problema. Sem os disjuntores (ou, como alternativa, os fusíveis), a eletricidade doméstica seria impraticável, devido ao perigo potencial de incêndios, danos resultantes de problemas na fiação elétrica ou falhas de equipamento.
Neste artigo, descobriremos como os disjuntores e fusíveis monitoram a corrente elétrica e como eles cortam a energia quando os níveis de corrente aumentam demais. Conforme veremos, o disjuntor é uma solução incrivelmente simples para um problema potencialmente letal.

Eletricidade básica


Para compreender os disjuntores, seria bom entendermos como funciona a eletricidade em nossas casas.
Eletricidade é definida pela suas três principais propriedades:
  •  tensão
  • corrente
  • resistência
Tensão é a "pressão" que movimenta a carga elétrica. Corrente é o "fluxo" da carga, a quantidade de carga que passa pelo condutor medida em qualquer ponto específico. Um condutor oferece uma certa quantidade de resistência a este fluxo, que varia dependendo do tamanho e composição do condutor.
Tensão, corrente e resistência estão todas inter-relacionadas: você não pode mudar uma sem interferir na outra. Corrente é igual à tensão dividida pela resistência - geralmente definida por I = v / r. Podemos entender isso de forma intuitiva: se você aumentar a pressão que atua na carga elétrica ou diminuir a resistência, mais carga fluirá. Se você diminuir a pressão ou aumentar a resistência, menos carga fluirá.  
Então, como isso tudo está integrado na sua casa?

O sistema de fornecimento de energia transporta a eletricidade da usina geradora até a sua casa. Lá dentro, a carga elétrica circula em um grande circuito, composto por vários circuitos menores. Uma extremidade do circuito, o fio fase, conduz até a usina geradora. A outra extremidade, chamada de fio neutro, segue para dentro da terra. Em razão do fio fase conectar-se a uma fonte alta de energia e o fio neutro conectar-se a uma fonte de energia neutra (a terra), existe tensão através do circuito. A carga move-se sempre que o circuito é fechado. Define-se esta corrente como corrente alternada, porque muda de direção rapidamente.

A rede de distribuição elétrica fornece eletricidade a uma tensão constante (120 e 240 volts nos Estados Unidos), mas a resistência e, portanto, a corrente, variam dentro de uma casa. Todas as diferentes lâmpadas elétricas e eletrodomésticos oferecem uma certa quantidade de resistência, também denominada carga. Esta resistência é o que faz um aparelho funcionar. Uma lâmpada elétrica, por exemplo, contém um filamento interno que é muito resistente ao fluxo de carga. Ela tem que trabalhar duro para se mover, o que aquece o filamento e faz com que ele brilhe.

Em uma fiação, os fios fase e neutro nunca se tocam diretamente. A carga que passa pelo circuito sempre atravessa um aparelho, que age como um resistor. Desta forma, a resistência elétrica, em um eletrodoméstico, limita a quantidade de carga que pode fluir através do circuito - com tensão e resistência constantes, a corrente também deve ser constante. Eletrodomésticos são projetados para manter a corrente a um nível relativamente baixo por questões de segurança. Demasiada carga, fluindo através de um circuito em um momento específico, aqueceria os fios do circuito e de toda a fiação a níveis perigosos, podendo causar um incêndio.

Isso mantém o circuito elétrico funcionando normalmente, na maior parte do tempo. Mas, ocasionalmente, algo poderá conectar um fio fase diretamente a um fio neutro ou a algo que o conduza à terra. Por exemplo: o motor de um ventilador poderia sobreaquecer e derreter, fundindo os fios neutro e fase; ou alguém poderia colocar um prego na parede e, acidentalmente atingir um condutor elétrico. Quando o fio fase conecta-se diretamente a terra, a resistência no circuito é mínima, então, a tensão força uma enorme quantidade de carga pelos fios. Se esse processo continuar, os cabos sobreaquecerão e poderão iniciar um incêndio.
A função do disjuntor é interromper o circuito toda vez que ocorre sobrecarga ou curto-circuito.


O disjuntor

Básicos
O dispositivo de proteção de circuito mais simples que existe é o fusível. O fusível é apenas um fio fino, fechado em uma cápsula e que se conecta ao circuito. Quando o circuito é fechado, toda a corrente passa pelo fio do fusível, que recebe a mesma corrente que qualquer outro ponto do circuito. O fusível é planejado para  romper quando aquecido acima de um certo nível; se a corrente subir muito, o fio queima. A destruição do fusível abre o circuito antes que o excesso de corrente possa danificar a fiação.
O problema com o fusível é que ele funciona apenas uma vez. Toda vez que um rompe, precisa ser substituído. Um disjuntor faz basicamente a mesma coisa: abre o circuito assim que a corrente atinge níveis perigosos. No entanto, pode ser reutilizado.
Um disjuntor básico consiste de um simples interruptor, conectado a uma lâmina bimetálica ou a um eletroimã . O diagrama abaixo mostra a configuração de um eletromagneto.


O fio fase no circuito conecta-se às duas extremidades do interruptor. Quando o interruptor é ligado, a eletricidade pode fluir do terminal inferior através de um eletromagneto, subindo até um contato móvel, depois, através de um contato fixo e saindo pelo terminal superior.
A eletricidade magnetiza o eletromagneto. O aumento da corrente ativa a força magnética do eletromagneto, e a diminuição da corrente a reduz. Quando a corrente salta a níveis de risco, o eletromagneto baixa uma alavanca metálica conectada ao mecanismo do interruptor; este desloca-se, separando o contato móvel do contato fixo e quebrando o circuito. A eletricidade, então, é desligada.



Clique sobre o disjuntor e libere o interruptor


Uma configuração com lâmina bimetálica funciona com o mesmo princípio, exceto pelo fato de que, ao invés de energizar um eletromagneto, uma corrente alta entorta uma fina lâmina para mover o mecanismo. Alguns disjuntores usam uma carga explosiva para desligar o interruptor. Quando a corrente se eleva a um certo nível, ela detona o material explosivo, que aciona um pistão para abrir o interruptor.


Avançados


Disjuntores mais avançados usam componentes eletrônicos (dispositivos semicondutores) para monitorar os níveis de corrente, em vez de simples mecanismos elétricos. Esses elementos são muito mais precisos e desligam o circuito mais rapidamente, embora sejam bem mais caros. Por essa razão, a maioria das casas ainda usa disjuntores convencionais.
Um dos disjuntores mais recentes é o interruptor com circuito de falha de aterramento, ou GFCI. Esses sofisticados disjuntores são elaborados para proteger as pessoas contra choques elétricos, em vez de proteger a fiação do prédio. O GFCI monitora constantemente a corrente nos fios terra e neutro do circuito. Quando tudo está funcionando corretamente, a corrente nos dois lados deve ser exatamente a mesma. Assim que o fio fase conecta-se diretamente ao neutro (se alguém o tocar acidentalmente, por exemplo), o fio fase recebe um surto de corrente, o que não acontece com o fio neutro. O GFCI abre o circuito logo que isso acontece, prevenindo a eletrocução. Uma vez que não precisa aguardar que a corrente se eleve a níveis críticos, o GFCI reage de maneira mais rápida do que um disjuntor convencional.
Toda a fiação em uma casa passa através do painel central de disjuntores (ou caixa de fusíveis). Um painel central comum inclui cerca de uma dúzia de disjuntores ligados a vários circuitos dentro da casa. Um circuito poderia abranger todas as tomadas da sala de estar e um outro poderia reunir a iluminação em outro compartimento. Aparelhos maiores, como a central de ar condicionado ou o refrigerador, geralmente possuem seu próprio circuito.

quinta-feira, 10 de março de 2011

Tipos de OLEDs: transparente, de emissão superior, dobrável e branco

OLED transparente

OLEDs transparentes têm apenas componentes transparentes (substrato, cátodo e ânodo) e, quando desligados, são até 85% tão transparentes quanto seu substrato. Quando um display de OLED transparente é ligado, permite que a luz passe nas duas direções. O display OLED transparente pode ter matriz ativa ou passiva. Essa tecnologia pode ser usada para displays "heads-up".





OLED de emissão superior

Os OLEDs de emissão superior têm um substrato que pode ser opaco ou refletivo. Eles são mais adequados para projetos com matrizes ativas. Os fabricantes podem usar os displays OLED de emissão superior em cartões inteligentes.





OLED dobrável

Os OLEDs dobráveis têm substratos feitos de lâminas metálicas ou de plásticos muito flexíveis. Os OLEDs dobráveis são muito leves e duráveis. O seu uso em dispositivos tais como telefones celulares e PDAs, pode reduzir as quebras, a maior causa das devoluções ou reparos. De modo geral, os displays OLED dobráveis podem ser costurados em tecidos para fabricação de roupas "inteligentes", tais como roupas de sobrevivência externa com chip de computador integrado, telefone celular, receptor GPS e display OLED costurado a ela.

OLED branco

Os OLEDs brancos emitem uma luz branca, brilhante e mais uniforme e com energia mais eficiente do que aquela emitida pelas lâmpadas fluorescentes. Os OLEDs brancos também têm a qualidade das cores reais das lâmpadas incandescentes. Como os OLEDs podem ser feitos em folhas grandes, eles podem substituir as lâmpadas fluorescentes que são usadas atualmente em casas e prédios. Seu uso poderá reduzir potencialmente os custos de energia com iluminação.



Vantagens e desvantagens do OLED

O LCD é, atualmente, o display escolhido para pequenos dispositivos e também é popular para as TVs de tela grande. Os LEDs normais formam, freqüentemente, os dígitos em relógios digitais e outros dispositivos eletrônicos. Os OLEDs oferecem muitas vantagens sobre os LCDs e LEDs:
  • as camadas orgânicas de plástico do OLED são mais finas, leves e flexíveis do que as camadas cristalinas do LED ou LCD;
  • como as camadas de emissão de luz do OLED são mais leves, o substrato do OLED pode ser flexível ao invés de rígido. Os substratos do OLED podem ser de plástico, ao contrário do vidro usado nos LEDs e LCDs;
  • os OLEDs são mais brilhantes do que os LEDs. Como as camadas orgânicas do OLED são mais finas do que as camadas de cristal inorgânico correspondentes de um LED, as camadas condutiva e emissiva do OLED podem ser sobrepostas. Da mesma forma, os LEDs e os LCDs precisam do vidro como suporte e o vidro absorve alguma luz. Os OLEDs não precisam de vidro;
  • os OLEDs não precisam de luz de fundo como os LCDs (consulte Como funcionam as LCDs - (telas de cristal líquido). Os LCDs funcionam através do bloqueio seletivo das áreas de luz de fundo para montar as imagens que você vê, enquanto os OLEDs geram a própria luz. Como os OLEDs não necessitam de luz de fundo, eles consomem muito menos energia do que os LCDs (a maior parte da energia do LCD vai para a luz de fundo). Isto é especialmente importante para dispositivos que funcionam com bateria, como os telefones celulares;
  • os OLEDs são mais fáceis de serem produzidos e podem ser feitos em tamanhos maiores. Como os OLEDs são essencialmente plásticos, podem ser feitos no formato de folhas grandes e finas. Já é muito mais difícil crescer e distribuir com esse formato tantos cristais líquidos;
  • os OLEDs possuem grandes campos de visualização, aproximadamente 170 graus. Como os LDCs funcionam bloqueando a luz, eles apresentam um obstáculo natural de visualização de determinados ângulos. Os OLEDs produzem sua própria luz, portanto, têm um alcance maior de visualização;
Problemas do OLEDO OLED parece ser a tecnologia perfeita para todos os tipos de displays, mas ele também apresenta alguns problemas:
  • vida útil - enquanto os filmes de OLED vermelho e verde apresentam uma longa vida útil (10 mil a 40 mil horas), os orgânicos azuis apresentam atualmente uma vida útil mais curta (apenas mil horas aproximadamente);
  • fabricação- os processos de fabricação são caros atualmente;
  • água- a água pode facilmente danificar os OLEDs;

Aplicações atuais e futuras do OLED

Atualmente, os OLEDs são usados em dispositivos de tela pequena como telefones celulares, PDAs e câmeras digitais. Em setembro, de 2004, a Sony Corporation anunciou que estava começando a produção em massa das telas de OLED para seu modelo CLIE PEG-VZ90, um aparelho portátil de entretenimento pessoal.




Foto cedida Sony Corporation
Display de OLED do Sony Clie


A Kodak já usa displays de OLED em seus vários modelos de câmeras digitais.




Foto cedida Shopping.com
Kodak LS633 EasyShare com display de OLED


Várias empresas já fabricaram protótipos de monitores para computadores e TVs de tela grande. Em maio de 2005, a Samsung Electronics anunciou que tinha desenvolvido o primeiro televisor ultra fino, usando tela de OLED de 40 polegadas.




Foto cedida Samsung Electronics
Protótipo de TV de OLED com 40 polegadas da Samsung


A pesquisa e o desenvolvimento no campo dos OLEDs está avançando rapidamente e pode liderar as aplicações do futuro com displays "heads-up", painéis automotivos, displays para quadros de anúncios, iluminação no lar e no escritório e displays flexíveis. Como os OLEDs se atualizam mais rápido do que os LCDs (quase mil vezes mais rápido), um dispositivo com display de OLED poderá alterar a informação quase em tempo real. As imagens de vídeo poderão ser mais realistas e constantemente atualizadas. O jornal do futuro poderá ser um display de OLED que se atualizará com notícias de última hora (pense no filme "Minority Report"(em inglês)) e como um jornal normal, você poderá dobrá-lo quando terminar de ler e enfiá-lo em sua mochila ou maleta.

quarta-feira, 9 de março de 2011

Como o oled emite luz

Os OLEDs emitem luz de maneira similar aos LEDs, através de um processo chamado eletrofosforescência.





O processo funciona da seguinte maneira:
  1. a bateria ou fonte de alimentação do dispositivo contendo o OLED, aplica uma voltagem através do OLED;
  2. uma corrente elétrica flui do cátodo para o ânodo através das camadas orgânicas (a corrente elétrica é um fluxo de elétrons):
    • o cátodo fornece elétrons à camada emissiva das moléculas orgânicas;
    • o ânodo remove elétrons da camada condutiva das moléculas orgânicas, isto é equivalente a entregar buracos de elétrons à camada condutiva;
  3. no limite entre as camadas emissiva e condutiva, os elétrons encontram buracos de elétrons:
    • quando um elétron encontra um buraco de elétron, preenche o buraco (esse elétron cai no nível de energia do átomo que perdeu um elétron);
    • quando isso acontece, o elétron fornece energia na forma de um fóton de luz (consulte Como funciona a luz);
  4. o OLED emite luz;
  5. a cor da luz depende do tipo de molécula orgânica na camada emissiva. Os fabricantes colocam vários tipos de filmes orgânicos no mesmo OLED para fazer displays coloridos;
  6. a intensidade ou brilho da luz depende da quantidade de corrente elétrica aplicada. Quanto maior for a corrente, maior será o brilho da luz.

Tipos de OLEDs: matriz passiva e ativa

Existem vários tipos de OLEDs:
  • OLED com matriz passiva
  • OLED com matriz ativa
  • OLED transparente
  • OLED de emissão superior
  • OLED dobrável
  • OLED branco
Cada tipo tem usos diferentes. Nas seções a seguir, discutiremos cada tipo de OLED. Vamos começar com os OLEDs de matriz passiva e ativa.
OLED de matriz passiva (PMOLED)Os PMOLEDs têm tiras de cátodo, camadas orgânicas e tiras de ânodo. As tiras de ânodo são arranjadas perpendicularmente às tiras de cátodo. As interseções do cátodo com o ânodo formam os pixels onde a luz é emitida. O circuito elétrico externo aplica uma corrente às tiras selecionadas de ânodo e cátodo, determinando quais pixels serão ligados e quais permanecerão desligados. Portanto, o brilho de cada pixel é proporcional à quantidade de corrente aplicada.





Os PMOLEDs são fáceis de fazer, mas consomem mais energia do que outros tipos de OLED, principalmente devido à energia necessária para alimentar o circuito externo. Os PMOLEDs são mais eficientes para textos e ícones e mais adequados para telas menores (2 a 3 polegadas de diagonal) como aquelas que você encontra nos telefones celulares, PDAs e MP3 players. Mesmo com o circuito externo, os OLEDs com matriz passiva consomem menos energia da bateria do que os LCDs que são usados atualmente nesses dispositivos.
OLED com matriz ativa (AMOLED)Os AMOLEDs têm camadas completas de cátodo, moléculas orgânicas e ânodo, mas a camada de ânodo se sobrepõe a uma estrutura de transistor de filme fino (TFT) que forma uma matriz. A própria estrutura TFT é o circuito elétrico que determina quais pixels ficam ligados para formar uma imagem.





Os AMOLEDs consomem menos energia do que os PMOLEDs porque a estrutura TFT requer menos energia do que o circuito externo, portanto, são eficientes para grandes displays. Os AMOLEDs também têm taxas de atualização mais rápidas, adequados para vídeo. Os AMOLEDs se adaptam melhor para monitores de computadores, TVs de tela grande e avisos eletrônicos ou painéis de anúncios.




OLED com molécula pequena x OLED com polímero
Os tipos de moléculas usadas pelos cientistas da Kodak, em 1987, para os primeiros OLEDs eram moléculas orgânicas pequenas. Apesar de as moléculas pequenas emitirem luz brilhante, os cientistas tinham que depositá-las sobre os substratos no vácuo ( processo de fabricação chamado de deposição a vácuo, que vimos na seção anterior). Desde 1990, os pesquisadores têm usado moléculas de polímeros grandes para emitir luz. A fabricação dos polímeros pode ser menos cara, e feita em folhas grandes, assim são mais adequadas para displays de tela grande.

terça-feira, 8 de março de 2011

Oleds

Imagine uma TV de alta definição com 2 metros de largura e menos de 0,60 cm de espessura, que consuma menos energia do que a maioria das TVs comuns e possa ser enrolada quando não estiver sendo usada. O que você diria se pudesse ter um display "heads up" em seu carro, display transparente usado à frente da cabeça? Que tal um monitor com display embutido em sua roupa? Esses dispositivos podem ser possíveis no futuro com a ajuda de uma tecnologia chamada de diodos de emissão de luz orgânicos (OLEDs – do inglês – Organic Light-Emitting Diodes).




Foto cedida Samsung Electronics
Protótipo de TV OLED de 40 polegadas da Samsung.


Os OLEDs são dispositivos de estado sólido compostos de filmes finos de moléculas orgânicas que criam luz com a aplicação de eletricidade. Os OLEDs podem fornecer displays mais nítidos e brilhantes em dispositivos eletrônicos e usam menos energia do que os diodos emissores de luz (LEDs) convencionais ou displays de cristal líquido (LCDs) usados atualmente.


Componentes do OLED

Como o LED, o OLED é um dispositivo semicondutor de estado sólido com espessura de 100 a 500 nanômetros e aproximadamente 200 vezes menor que um fio de cabelo humano. Os OLEDs podem ter duas ou três camadas de material orgânico. Nos projetos mais novos, a terceira camada ajuda a transportar elétrons do cátodo para a camada emissiva. Neste artigo, nos concentraremos no projeto de duas camadas.





O OLED consiste nas seguintes partes:
  • substrato (plástico transparente, vidro, lâmina) - o substrato dá suporte ao OLED;
  • ânodo (transparente) - o ânodo remove elétrons (adiciona "buracos" de elétron) quando uma corrente passa através do dispositivo;
  • camadas orgânicas - estas camadas são feitas de moléculas orgânicas ou polímeros;
    • camada condutora - esta camada é feita de moléculas de plástico orgânico que transportam "buracos" do ânodo. Um polímero condutor usado nos OLEDs é a polianilina;
    • camada emissiva - esta camada é feita de moléculas plásticas orgânicas (são diferentes da camada condutora), que transportam elétrons do cátodo. É aqui que a luz é gerada. Um polímero usado na camada emissiva é o polifluoreno.
  • Cátodo - pode ou não ser transparente dependendo do tipo de OLED - o cátodo injeta elétrons quando a corrente passa através do dispositivo.



Fabricando os OLEDs


Foto cedida Philips
Configuração de laboratório de uma impressora jato de tinta de alta precisão para fabricação dos displays de OLEDs de polímeros
A parte mais importante da fabricação dos OLEDs é aplicar as camadas orgânicas ao substrato. Isto pode ser feito de três maneiras:
  • Deposição no vácuo ou evaporação térmica no vácuo (VTE) - em uma câmara de vácuo, as moléculas orgânicas são suavemente aquecidas (evaporadas) e colocadas para condensar como filmes finos sobre substratos resfriados. Este processo é caro e ineficiente.
  • Deposição de vapor da fase orgânica (OVPD) - em uma câmara reatora de baixa pressão e paredes aquecidas, um gás transportador carrega as moléculas orgânicas evaporadas para os substratos resfriados, onde são condensadas sobre filmes finos. O uso de um gás transportador aumenta a eficiência e reduz o custo de fabricação dos OLEDs.
  • Impressão por jato de tinta - com a tecnologia do jato de tinta, os OLEDs são pulverizados sobre os substratos do mesmo modo que a tinta é pulverizada sobre o papel durante a impressão. A tecnologia do jato de tinta reduz enormemente o custo de fabricação dos OLEDs e permite que possam ser impressos em filmes suficientemente grandes para serem usados em displays como telas de TV de 80 polegadas ou placas de anúncios eletrônicas.

segunda-feira, 7 de março de 2011

Leds

Diodos emissores de luz, conhecidos como LEDs, são verdadeiros heróis não reconhecidos no mundo da eletrônica. Eles fazem vários trabalhos e são encontrados em todos os tipos de aparelhos. Eles formam os números em relógios digitais, transmitem informações de controles remotos, iluminam relógios e informam quando suas ferramentas estão ligadas. Agrupados, eles podem formar imagens em uma tela de televisão gigante ou lâmpada incandescente normal. Basicamente, os LEDs são lâmpadas pequenas que se ajustam facilmente em um circuito elétrico. Mas diferentes de lâmpadas incandescentes comuns eles não têm filamentos que se queimam e não ficam muito quentes. Além disso eles são iluminados somente pelo movimento de elétrons em um material semicondutor, e duram tanto quanto um transistor padrão.
Neste artigo, vamos examinar os princípios básicos existentes por trás destes sinais luminosos que encontramos em todos os lugares, apresentando alguns princípios bacanas da eletricidade e luz no processo.



O que é um diodo?

Um diodo é o tipo mais simples de semicondutor. De modo geral, um semicondutor é um material com capacidade variável de conduzir corrente elétrica. A maioria dos semicondutores é feita de um condutor pobre que teve impurezas (átomos de outro material) adicionadas a ele. O processo de adição de impurezas é chamado de dopagem.
No caso dos LEDs, o material condutor é normalmente arseneto de alumínio e gálio (AlGaAs). No arseneto de alumínio e gálio puro, todos os átomos se ligam perfeitamente a seus vizinhos, sem deixar elétrons (partículas com carga negativa) livres para conduzir corrente elétrica. No material dopado, átomos adicionais alteram o equilíbrio, adicionando elétrons livres ou criando buracos onde os elétrons podem ir. Qualquer destas adições pode tornar o material um melhor condutor.
Um semicondutor com elétrons extras é chamado material tipo-N, já que tem partículas extras carregadas negativamente. No material tipo-N, elétrons livres se movem da área carregada negativamente para uma área carregada positivamente.
Um semicondutor com buracos extras é chamado material tipo-P, já que ele efetivamente tem partículas extras carregadas positivamente. Os elétrons podem pular de buraco em buraco, movendo-se de uma área carregada negativamente para uma área carregada positivamente. Como resultado, os próprios buracos parecem se mover de uma área carregada positivamente para uma área carregada negativamente.
Um diodo é composto por uma seção de material tipo-N ligado a uma seção de material tipo-P, com eletrodos em cada extremidade. Essa combinação conduz eletricidade apenas em um sentido. Quando nenhuma voltagem é aplicada ao diodo, os elétrons do material tipo-N preenchem os buracos do material tipo-P ao longo da junção entre as camadas, formando uma zona vazia. Em uma zona vazia, o material semicondutor volta ao seu estado isolante original - todos os buracos estão preenchidos, de modo que não haja elétrons livres ou espaços vazios para elétrons, e assim a carga não pode fluir.




Na junção, elétrons livres do material tipo-N preenchem buracos do material tipo-P. Isto cria uma camada isolante no meio do diodo, chamada de zona vazia.

Para se livrar da zona vazia, você precisa que elétrons se movam da área tipo-N para a área tipo-P e que buracos se movam no sentido inverso. Para fazer isto, você conecta o lado tipo-N do diodo ao terminal negativo do circuito e o lado tipo-P ao terminal positivo. Os elétrons livres no material tipo-N são repelidos pelo eletrodo negativo e atraídos para o eletrodo positivo. Os buracos no material tipo-P se movem no sentido contrário. Quando a diferença de potencial entre os eletrodos é alta o suficiente, os elétrons na zona vazia são retirados de seus buracos e começam a se mover livremente de novo. A zona vazia desaparece e a carga se move através do diodo.




Quando o terminal negativo do circuito é preso à camada tipo-N e o terminal positivo é preso à camada tipo-P, elétrons e buracos começam a se mover e a zona vazia desaparece

Se você tentar mover a corrente no sentido oposto, com o lado tipo-P conectado ao terminal negativo do circuito e o lado tipo-N conectado ao pólo positivo, a corrente não fluirá. Os elétrons negativos no material tipo-N são atraídos para o eletrodo positivo. Os buracos positivos no material tipo-P são atraídos para o eletrodo negativo. Nenhuma corrente flui através da junção porque os buracos e os elétrons estão cada um se movendo no sentido errado. A zona vazia então aumenta.




Quando o terminal positivo do circuito está ligado à camada tipo-N e o terminal negativo está ligado à camada tipo-P, elétrons livres são coletados em um terminal do diodo e os buracos são coletados em outro. A zona vazia se torna maior.

A interação entre elétrons e buracos nesta configuração tem um interessante efeito colateral - ela gera luz.



Como pode um diodo produzir luz?

Luz é uma forma de energia que pode ser liberada por um átomo. Ela é feita de uma grande quantidade de pequenos pacotes tipo partículas que têm energia e momento, mas nenhuma massa. Estas partículas, chamadas fótons, são as unidades básicas da luz.
Os fótons são liberados como um resultado do movimento de elétrons. Em um átomo, os elétrons se movem em orbitais ao redor do núcleo. Elétrons em orbitais diferentes têm quantidades diferentes de energia. De maneira geral, os elétrons com mais energia se movem em orbitais mais distantes do núcleo.
Para um elétron pular de um orbital mais baixo para um mais alto, algo deve aumentar seu nível de energia. Inversamente, um elétron libera energia quando "cai" de um orbital mais alto para um mais baixo. Essa energia é liberada na forma de um fóton. Uma grande queda de energia libera um fóton de alta energia, que é caracterizado por uma alta freqüência.

Elétrons livres se movendo através de um diodo podem cair em buracos de uma camada tipo-P. Isto envolve uma "queda" a partir da banda de condução para um orbital mais baixo, quando então os elétrons liberam energia na forma de fótons. Isso acontece em qualquer diodo, mas você pode apenas ver os fótons quando o diodo é composto por um material específico. Por exemplo, os átomos em um diodo de silício padrão são arrumados de forma que os elétrons "saltem" uma distância relativamente curta. Como resultado, a freqüência do fóton é tão baixa que é invisível ao olho humano - está na porção infravermelha do espectro de luz. Certamente,  isto não é necessariamente algo ruim: LEDs infravermelhos são ideais para controles remotos, entre outras coisas.




Diodos emissores de luz visível (VLEDs), como os que iluminam um relógio digital, são feitos com materiais que possuem uma grande distância entre a banda de condução e as orbitais mais baixos. A distância determina a freqüência do fóton - em outras palavras, ela determina a cor da luz.

Enquanto todos os diodos liberam luz, a maioria não o faz muito eficientemente. Em um diodo comum, o próprio material semicondutor termina absorvendo parte da energia da luz. Os LEDs são fabricados especialmente para liberar um grande número de fótons para fora. Além disso, eles são montados em bulbos de plásticos que concentram a luz em uma direção específica. Como você pode ver no diagrama, a maior parte da luz do diodo ricocheteia pelas laterais do bulbo, viajando na direção da ponta redonda.



Os LEDs têm muitas vantagens sobre lâmpadas incandescentes convencionais. Uma delas é que eles não têm um filamento que se queime e então durarão muito mais tempo. Além disso, seus pequenos bulbos de plástico os tornam muito mais duráveis. Eles também cabem mais facilmente nos modernos circuitos eletrônicos.

Mas a principal vantagem é a eficiência. Em uma lâmpada incandescente convencional, o processo de produção de luz envolve a geração de muito calor (o filamento deve ser aquecido). Isso é energia totalmente desperdiçada. A menos que você use lâmpadas como aquecedor, porque uma enorme porção de eletricidade disponível não está indo para a produção de luz visível. LEDs geram pouco calor. Uma porcentagem muito mais alta de energia elétrica está indo diretamente para a geração de luz, o que diminui a demanda de eletricidade consideravelmente.

Até recentemente, os LEDs eram muito caros para serem usados na maioria das aplicações de iluminação, porque eles são feitos com material semicondutor avançado. Entretanto, o preço de dispositivos semicondutores tem caído na última década, tornando os LEDs uma opção de iluminação mais viável para uma grande variedade de situações. Embora inicialmente eles possam ser mais caros que as luzes incandescentes, seu custo mais baixo ao longo do tempo de uso faz deles uma melhor aquisição. No futuro, os diodos terão um papel ainda mais importante no mundo da tecnologia.

domingo, 6 de março de 2011

Relés

Um relé é um simples switch eletromecânico formado por um eletroímã e um conjunto de contatos. Os relés estão escondidos em todo tipo de dispositivos. Os primeiros computadores utilizavam relés para implementar funções booleanas.

Construção de um relé

Os relés são dispositivos simples e possuem quatro partes:
  • eletroímã
  • armadura que pode ser atraída pelo eletroímã
  • mola
  • conjunto de contatos elétricos
A animação a seguir mostra estas quatro partes em ação.



Nesta figura, você pode perceber que o relé é formado por dois circuitos completamente independentes. O primeiro está na parte inferior e funciona com o eletroímã. Neste circuito, um switch controla a potência do eletroímã. Quando o switch está ligado, o eletroímã é ativado e atrai a armadura (azul). A armadura funciona como um switch no segundo circuito. Quando o eletroímã está energizado, a armadura completa o segundo circuito e a luz se acende. Quando o eletroímã não está energizado, a mola puxa a armadura e o circuito não se completa. Neste caso, a luz não acende.
Quando você adquire um relé, você pode controlar diversas variáveis.

  • a tensão e corrente necessárias para ativar a armadura;
  • a tensão e corrente máximas que a armadura e contatos da armadura podem suportar;
  • o número de armaduras (geralmente, uma ou duas);
  • o número de contatos da armadura; geralmente, um ou dois (o relê do exemplo tem dois, mas um não é utilizado);
  • se o contato (caso exista apenas um contato) está normalmente aberto (NA) ou normalmente fechado (NF).

Um relé aberto


Aplicações dos relés

O objetivo do relé é utilizar pequena quantidade de energia eletromagnética (proveniente, por exemplo, de um pequeno interruptor ou circuito eletrônico simples) para mover uma armadura que pode gerar uma quantidade de energia muito maior. Por exemplo, você pode usar 5 volts e 50 miliamperes para ativar o eletroímã e energizar uma armadura que suporta 120V AC em 2 ampéres (240 watts).
Os relés são comuns em eletrodomésticos, geralmente quando existe um controle eletrônico que liga algo como um motor ou uma lâmpada. Eles também são muito comuns em carros, onde a fonte de energia de 12V significa que quase tudo no carro precisa de uma grande quantidade de corrente. Nos modelos mais novos, os fabricantes combinam os painéis de relés na caixa de fusíveis para facilitar a manutenção. As seis caixas cinzas nesta foto da caixa de fusíveis do Ford Winstar são relés.




Em lugares onde se precisa de uma grande quantidade de energia, os relés são ligados em cascata. Neste caso, um pequeno relé energiza um relé maior e este último aciona a energia suficiente para realizar o trabalho.


Capacitores




O capacitor se parece um pouco com uma bateria. Embora funcionem de maneira totalmente diferente, tanto os capacitores como as baterias armazenam energia elétrica. Se você já sabe Como funcionam as pilhas e baterias, então já sabe que uma pilha (ou uma bateria, de modo mais genérico) possui dois pólos (ou terminais). Dentro da pilha, reações químicas produzem elétrons em um terminal e absorvem elétrons no outro.
O capacitor é um dispositivo muito mais simples, e não pode produzir novos elétrons - ele apenas os armazena.

Como a pilha, o capacitor possui dois terminais. Dentro do capacitor, os terminais conectam-se a duas placas metálicas separadas por um dielétrico. O dielétrico pode ser ar, papel, plástico ou qualquer outro material que não conduza eletrecidade e impeça que as placas se toquem. Você pode fazer facilmente um capacitor a partir de dois pedaços de papel alumínio e um pedaço de papel. Não seria um capacitor muito bom em termos de capacidade de armazenamento, porém funcionaria.

Em um circuito eletrônico, um capacitor é indicado da seguinte forma:


Quando você conecta um capacitor a uma pilha, é isto que acontece:




  • a placa do capacitor conectada ao terminal negativo da pilha aceita os elétrons que a pilha produz
  • a placa do capacitor conectada ao terminal positivo da pilha perde os elétrons para a pilha
Depois de carregado, o capacitor possui a mesma tensão que a pilha (1,5 volts na pilha significa 1,5 volts no capacitor). Em um capacitor pequeno, a capacidade é pequena. Porém capacitores grandes podem armazenar uma carga considerável. Você poderá encontrar capacitores do tamanho de latas de refrigerante, por exemplo, que armazenam carga suficiente para acender o bulbo de uma lâmpada de flash por um minuto ou mais. Quando você vê relâmpagos no céu, o que você está vendo é um imenso capacitor onde uma placa é a nuvem e a outra placa é o solo, e o relâmpago é a liberação da carga entre essas duas "placas". Obviamente, um capacitor tão grande pode armazenar uma enorme quantidade de carga.
Digamos que você conecte um capacitor desta maneira:




Você tem uma pilha, uma lâmpada e um capacitor. Se o capacitor for grande, você notará que, quando conecta a pilha, a lâmpada se acenderá à medida que a corrente flui da pilha para o capacitor e o carrega. A lâmpada diminuirá sua luminosidade progressivamente até finalmente apagar, assim que o capacitor atingir sua capacidade. Então você poderá remover a pilha e substituí-la por um fio elétrico. A corrente fluirá de uma placa do capacitor para a outra. A lâmpada acenderá e então começará a diminuir cada vez mais sua luminosidade, até apagar assim que o capacitor estiver totalmente descarregado (o mesmo número de elétrons nas duas placas).



Como uma torre de água
Uma maneira de visualizar a ação do capacitor é imaginá-lo como uma torre de água conectada a uma tubulação. Uma torre de água "armazena" pressão de água - quando as bombas do sistema de água enviam mais água do que a cidade necessita, o excesso é armazenado na torre de água. Então, nos momentos de maior demanda, o excesso de água flui para fora da torre para manter a pressão alta. Um capacitor armazena elétrons da mesma forma, e pode liberá-los mais tarde.

Farads

A unidade de capacitância é o farad. Um capacitor de 1 farad pode armazenar um coulomb de carga a 1 volt. Um coulomb é 6,25E18 (6,25 * 10^18, ou 6,25 bilhões de bilhões) de elétrons. Um ampère representa a razão de fluxo de elétrons de 1 coulomb de elétrons por segundo, então, um capacitor de 1 farad pode armazenar 1 ampère-segundo de elétrons a 1 volt.
Um capacitor de 1 farad seria bem grande. Ele poderá ser do tamanho de uma lata de atum ou de uma garrafa de 1litro de refrigerante, dependendo da tensão que ele pode suportar. Então, normalmente, os capacitores são medidos em microfarads (milionésimos de um farad).
Para ter uma idéia de quanto é um farad, pense desta forma: uma pilha alcalina AA comum contém aproximadamente 2,8 ampère-hora. Isto significa que uma pilha AA pode produzir 2,8 ampères durante uma hora a 1,5 volts (aproximadamente 4,2 watts-hora - uma pilha AA pode acender uma lâmpada de 4 watts por pouco mais de uma hora). Vamos pensar em 1 volt para tornar as contas mais fáceis. Para armazenar a energia de uma pilha AA em um capacitor, seriam necessários 3.600 * 2,8 = 10.080 farads para manter, pois um ampère-hora é 3.600 ampères-segundo.
Se é necessário algo do tamanho de uma lata de atum para manter um farad, então 10.080 farads precisariam de MUITO mais espaço que uma única pilha AA. Obviamente, não é possível utilizar capacitores que armazenam uma quantidade significativa de energia, a menos que isto seja feito em altas tensões.

Aplicações

A diferença entre um capacitor e uma pilha é que o capacitor pode descarregar toda sua carga em uma pequena fração de segundo, já uma pilha demoraria alguns minutos para descarregar-se. É por isso que o flash eletrônico em uma câmera utiliza um capacitor, a pilha carrega o capacitor do flash durante vários segundos, e então o capacitor descarrega toda a carga no bulbo do flash quase que instantaneamente. Isto pode tornar um capacitor grande e carregado extremamente perigoso, os flashes e as TVs possuem advertências sobre abri-los por este motivo. Eles possuem grandes capacitores que poderiam matá-lo com a carga que contêm.

Os capacitores são utilizados de várias maneiras em circuitos eletrônicos:
  • algumas vezes, os capacitores são utilizados para armazenar carga para utilização rápida. É isso que o flash faz. Os grandes lasers também utilizam esta técnica para produzir flashes muito brilhantes e instantâneos;
  • os capacitores também podem eliminar ondulações. Se uma linha que conduz corrente contínua (CC) possui ondulações e picos, um grande capacitor pode uniformizar a tensão absorvendo os picos e preenchendo os vales;
  • um capacitor pode bloquear a CC. Se você conectar um pequeno capacitor a uma pilha, então não fluirá corrente entre os pólos da pilha assim que o capacitor estiver carregado (o que é instantâneo se o capacitor é pequeno). Entretanto, o sinal de corrente alternada (CA) flui através do capacitor sem qualquer impedimento. Isto ocorre porque o capacitor irá carregar e descarregar à medida que a corrente alternada flutua, fazendo parecer que a corrente alternada está fluindo;
Uma das utilizações mais comuns dos capacitores é combiná-los com indutores para criar osciladores.


sábado, 5 de março de 2011

Valor do resistor

Calcule o valor de um resistor através deste simples programa.




domingo, 27 de fevereiro de 2011

Ligação Estrela e Triangulo

As cargas trifásicas podem ser interligadas ao sistema de dois modos distintos:
  • Em estrela, também chamado de Y: um dos terminais das cargas é conectado a uma das fases do sistema enquanto o outro terminal é conectado a um ponto comum que é o neutro utilizado para se medir as tensões de fase.
  • Em triângulo, também chamado de delta: nesta configuração um dos terminais das cargas é conectado a um outro terminal de outra carga e as fases do sistema são interligadas nos pontos de junção dos terminais da carga.

Na conexão estrela podemos calcular o valor eficaz das 'tensões de linha' a partir dos valores eficazes das 'tensões de fase':
V_{lin}^{ab} = \sqrt{3} v_{fas}^{a}

E as 'correntes de fase' são idênticas às 'correntes de linha', pois a corrente que circula por uma das cargas é a mesma que circula por uma das fases.

Na conexão triângulo ou delta a 'tensão de fase' é igual a 'tensão de linha' pois a tensão aplicada sobre cada uma das cargas é a diferença entre as tensões aplicadas às cargas vizinhas. E os valores eficazes das 'correntes de linha' podem ser calculadas com os valores eficazes das 'correntes de fase':
I_{lin}^{a} = \sqrt{3} I_{fas}^{a}

sexta-feira, 25 de fevereiro de 2011

Tipos de rede elétrica

Sistema trifásico
No sistema trifásico temos três fases com ou sem neutro, c ada fase está defasada entre sí em 120 graus. As fases do sistema trifásico tradicional são identificadas pelas letras R, S, T, e o neutro pela letra N.

Rede trifásica com neutro:

R----------------------------------------
S----------------------------------------
T----------------------------------------
N---------------------------------------

*É normalmente usado na indústria

Sistema bifásico
Na rede bifásica usamos duas fases do sisstema trifásico como é mostrado abaixo:

R----------------------------------------
S----------------------------------------

Sistema monofásico
Na rede monofásica usamos um neutro e uma fase como é mostrado abaixo:

R----------------------------------------
N----------------------------------------

*Usado em residências


quinta-feira, 24 de fevereiro de 2011

Chave

E Um dispositivo que permite um seccionamento seguro de um circuito elétrico. As chaves podem ou não ter retensão. Os tipos de contato de uma chave podem ser classificados como: Normalmente abertos "NA" (normally open "NO") ou normalmente fechados "NF" (normally close "NC")

quarta-feira, 23 de fevereiro de 2011

Elétrica Industrial

Condições para que uma corrente elétrica circule por um circuito

A primeira condição:
Ligar o dispositivo a um gerador;
A segunda condição:
Deve haver tensão elétrica nos polos do gerador;
A terceira condição:
Não pode haver interrupções no caminho da corrente elétrica;

O sistema responsável pelo transporte de energia elétrica das unidades geradoras para as unidades consumidoras é composta basicamente por três subsistemas:

Sistema de geração de energia
Composta pelos elementos responsáveis pela conversão da energia de alguma fonte primária em energia elétrica e quaisquer outros componentes das unidades de geração.
Sistema de transmissão
Composta pelos elementos responsáveis pelo transporte da energia obtida dos vários sistemas de geração para o(s) sistema(s) de distribuição interligados pelo sistema de transmissão.
Sistemas de distribuição
Composta pelos elementos responsáveis pela adequação da energia para o uso de consumidores de grande, médio e pequeno porte.
A transmissão de energia elétrica é feita por meio de um sistema de transformadores e condutores elétricos também chamados de linhas de transmissão os quais transmitem a energia elétrica gerada nas unidades geradoras para as unidades consumidoras ou cargas.
O sistema de transmissão permite que a tensão elétrica proveniente dos terminais dos geradores localizados nas unidades de geração alcance a alimentação das unidades de consumo atendidas pelo sistema.
Nos primórdios da implementação do sistema de transmissão de energia de longa distância, graças ao avanço tecnológico principalmente devido ao trabalho de Nikola Tesla foi utilizado o sistema alternado para as tensões e correntes, de forma a permitir o transporte de energia a longas distâncias sem perdas significativas a ponto de inviabilizar o processo.
Para a geração de tensões e correntes alternadas, utiliza-se geradores síncronos ou de indução que em teoria poderiam fornecer qualquer número de sinais de tensões e correntes alternadas igualmente defasadas entre si dependendo da construção dos geradores.
Por questões de praticidade, econômicas (economia de material) e técnicas (qualidade da energia fornecida), optou-se por utilizar o sistema trifásico.

terça-feira, 22 de fevereiro de 2011

Corrente elétrica

Resumo sobre Corrente elétrica

A corrente elétrica é o movimento ordenado de elétrons livres no interior de um material sólido condutor.

Tipos de corrente:

- Corrente contínua

A corrente contínua é gerada por pilhas, baterias, paineis solares, etc, e caracteriza-se por:
Apresentar um único sentido, pois os pólos do gerador são fixos.
Apresenta valor de tensão constante no tempo.

- Corrente Alternada

A corrente alternada é gerada por alternadores, e caracteriza-se por:
Mudar de sentido ciclicamente devido a mudança de posição dos pólos nos termonais do gerador
Valor de tensão varia no tempo.


Intensidade da Corrente

A intensidade da corrente elétrica pode ser imaginada como a quantidade de elétrons que se movimentam no interior de um material condutor por segundo. A sua unidade de medida é o Ampér, símbolo A.

1A = 1 C/s (um coulomb por segundo) ou seja quando dizemos que por um fio condutor circula uma corrente de 1A, dizemos que por qualquer pedaço deste fio estão passando 6,25 x 10 ¹8 (dez elevado na décima oitava potência)
elétrons.

segunda-feira, 21 de fevereiro de 2011

Tensão elétrica

Resumo sobre tensão elétrica

A tensão elétrica também chamada de diferença de potencial e vulgarmente conhecida como voltagem.
A tensão elétrica pode ser imaginada como uma força que impulsiona elétrons. A tensão elétrica provoca surgimento de uma corrente elétrica. Sem tensão elétrica não temos corrente elétrica.
O aparelho que mede valores de tensão elétrica chama-se: Voltímetro.
Sua unidade de medida é o VOLT, e seu símbolo é a letra V.

domingo, 20 de fevereiro de 2011

Carga Elétrica

O que é?

Carga elétrica é a propriedade que elétrons e prótons apresentam e que lhes confere a capacidade de atração e repulsão de outras cargas elétricas. O neutron não apresenta carga elétrica.